Search results for "Neutron"

showing 10 items of 2330 documents

Localized Motion in Supercooled Glycerol as Measured by 2 H-NMR Spin-Lattice Relaxation and Incoherent Neutron Scattering

1991

Selectively deuterated glycerol has been subjected to 2H-NMR spin-lattice relaxation and quasi-elastic neutron scattering experiments. The measurements yield relaxation rates and a non-Gaussian Q-dependence of the Debye-Waller factor which are different for the two hydrogen sites. The data analysis shows that below the onset of the glass transition α-process the hydrogens perform a local motion (≈ 10-12 s) in addition to what is expected from harmonic phonons. The resulting mean-square displacements are highly temperature dependent but are significantly smaller than those found in van der Waals glasses. Amplitudes and activation energies of the carbon-bonded and oxygen-bonded hydrogens are …

Materials scienceCondensed matter physicsPhononSpin–lattice relaxationGeneral Physics and AstronomyNeutron scatteringMolecular physicssymbols.namesakeDeuteriumsymbolsRelaxation (physics)van der Waals forceGlass transitionSupercoolingEurophysics Letters (EPL)
researchProduct

The beta-decay of95Rb and97Rb

1983

Theβ-decay of 377 ms95Rb and 168ms97Rb has been thoroughly investigated by means ofγ-ray, conversion electron andβ-delayed neutron spectroscopy. More than 97% of theβ-decay to particle-bound states has been placed in level schemes of95Sr and97Sr. High-resolution neutron spectroscopic studies have allowed to extend the knowledge of the excitation spectra up to 9 MeV, respectively 10 MeV. The density of neutron-unbound levels in95Sr and97Sr has been derived from peak stripping analyses of the neutron spectra. Beta-strength functions (S β(E)) have been investigated in detail. They indicate that Gamow-Tellerβ-decay of both precursors is dominated by nuclear structure. The discovered pronounced …

PhysicsNuclear and High Energy PhysicsStripping (chemistry)Nuclear TheoryNuclear structureNuclear fusionNeutronElectronAtomic physicsNuclear ExperimentRandom phase approximationBeta decayNeutron spectroscopyZeitschrift f�r Physik A Atoms and Nuclei
researchProduct

GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences

2018

The LIGO Scientific and Virgo Collaborations have announced the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star background will add to the background from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude $\Omega_{\rm…

Design sensitivityneutron star: binarygravitational radiation: stochasticAstronomyX-ray binaryGeneral Physics and AstronomyAstrophysicsAstrophysics01 natural sciencesGeneral Relativity and Quantum CosmologylocalizationGravitational wave backgroundGravitational Waves Neutron Stars Stochastic Background Virgo LIGOblack holeLIGOstochastic modelQCQBPhysicsGAMMA-RAY BURSTSSignal to noise ratioStochastic systemsBlack holesGravitational effectsarticleAstrophysics::Instrumentation and Methods for AstrophysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSING[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Gravitational wave sources Experimental studies of gravity Gravitational WavesGravitationBinary neutron starsX-ray bursterBinsAstrophysics::High Energy Astrophysical PhenomenaMERGERSFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsGravity wavesgravitational radiation: direct detectionBinary pulsarNeutron starsSTAR-FORMATIONPhysics and Astronomy (all)General Relativity and Quantum CosmologyBinary black holebinary: coalescence0103 physical sciencesFrequency bandsddc:530RATESINTERFEROMETERS010306 general physicsAstrophysics::Galaxy AstrophysicsNeutronsGravitational Waves010308 nuclear & particles physicsGravitational waveVirgogravitational radiation: backgroundgravitational radiationAstronomyNeutron Stars530 Physikbinary: compactsensitivityStarsLIGObackground: stochasticEVOLUTIONsignal noise ratioVIRGOPhysics and Astronomyblack hole: binarygravitational radiation: emissionStellar black holeStochastic BackgroundDewey Decimal Classification::500 | Naturwissenschaften::530 | PhysikHIGH-REDSHIFTneutron star: coalescencePhysical Review Letters
researchProduct

Long-term optical and X-ray variability of the Be/X-ray binary H 1145-619: Discovery of an ongoing retrograde density wave

2017

Multiwavelength monitoring of Be/X-ray binaries is crucial to understand the mechanisms producing their outbursts. H 1145-619 is one of these systems, which has recently displayed X-ray activity. We investigate the correlation between the optical emission and the X-ray activity to predict the occurrence of new X-ray outbursts from the inferred state of the circumstellar disc. We have performed a multiwavelength study of H 1145-619 from 1973 to 2017 and present here a global analysis of its variability over the last 40 years. We have used optical spectra from the SAAO, SMARTS and SALT telescopes and optical photometry from INTEGRAL/OMC and ASAS. We also used X-ray observations from INTEGRAL/…

BrightnessBe starAstrophysics::High Energy Astrophysical Phenomenamedia_common.quotation_subjectX-ray binarystars: emission-lineFOS: Physical sciencesAstrophysics01 natural sciencesSpectral lineDensity wave theoryPhotometry (optics)X-rays: binariesstars: neutrontechniques: photometric0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy Astrophysicsmedia_commonHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsBeAstronomy and AstrophysicsLight curvestars: emission-line BeAstrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary ScienceSkyAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomenatechniques: spectroscopicAstronomy & Astrophysics
researchProduct

Joule heating and the thermal evolution of old neutron stars

1998

We consider Joule heating caused by dissipation of the magnetic field in the neutron star crust. This mechanism may be efficient in maintaining a relatively high surface temperature in very old neutron stars. Calculations of the thermal evolution show that, at the late evolutionary stage ($t \geq 10$ Myr), the luminosity of the neutron star is approximately equal to the energy released due to the field dissipation and is practically independent of the atmosphere models. At this stage, the surface temperature can be of the order of $3 \times 10^{4} - 10^{5}$K. Joule heating can maintain this high temperature during extremely long time ($\geq 100$ Myr), comparable with the decay time of the m…

PhysicsField (physics)Astrophysics (astro-ph)FOS: Physical sciencesAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsDissipationAstrophysicsLuminosityMagnetic fieldNeutron starSpace and Planetary ScienceThermalAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsMagnetohydrodynamicsJoule heatingAstrophysics::Galaxy Astrophysics
researchProduct

Nucleation and Growth of CaCO3 Mediated by the Egg-White Protein Ovalbumin: A Time-Resolved in situ Study Using Small-Angle Neutron Scattering

2008

Mineralization of calcium carbonate in aqueous solutions starting from its initiation was studied by time-resolved small-angle neutron scattering (SANS). SANS revealed that homogeneous crystallization of CaCO 3 involves an initial formation of thin plate-shaped nuclei which subsequently reassemble to 3-dimensional particles, first of fractal and finally of compact structure. The presence of the egg-white protein ovalbumin leads to a different progression of mineralization through several stages; the first step represents amorphous CaCO 3, whereas the other phases are crystalline. The formation and dissolution of the amorphous phase is accompanied by Ca (2+)-mediated unfolding and cross-link…

Protein FoldingOvalbuminProtein ConformationChemistryNeutron diffractionNucleationWaterGeneral ChemistryNeutron scatteringBiochemistrySmall-angle neutron scatteringCatalysisCalcium Carbonatelaw.inventionAmorphous solidCalcium ChlorideNeutron DiffractionCrystallographyColloid and Surface ChemistrylawVateriteScattering Small AngleCrystallizationCrystallizationDissolutionJournal of the American Chemical Society
researchProduct

HfF+ as a candidate to search for the nuclear weak quadrupole moment

2018

Nuclei with a quadrupole deformation, such as $^{177}\mathrm{Hf}$ have enhanced weak quadrupole moment which induces the tensor weak electron-nucleus interaction in atoms and molecules. Corresponding parity-non-conserving (PNC) effect is strongly enhanced in the ${}^{3}{\mathrm{\ensuremath{\Delta}}}_{1}$ electronic state of the $^{177}\mathrm{HfF}^{+}$ cation which has very close opposite parity levels mixed by this tensor interaction. In the present paper we perform relativistic many-body calculations of this PNC effect. It is shown that the tensor weak interaction induced by the weak quadrupole moment gives the dominating contribution to the PNC effects in $^{177}\mathrm{HfF}^{+}$ which s…

Chemical Physics (physics.chem-ph)PhysicsAtomic Physics (physics.atom-ph)Nuclear TheoryAtoms in moleculesFOS: Physical sciencesParity (physics)Weak interaction01 natural sciencesPhysics - Atomic Physics010305 fluids & plasmasPhysics - Chemical Physics0103 physical sciencesQuadrupoleNeutronPhysics::Atomic PhysicsAtomic physics010306 general physicsPhysical Review A
researchProduct

Towards modelling the central engine of short GRBs

2011

Numerical relativity simulations of non-vacuum spacetimes have reached a status where a complete description of the inspiral, merger and post-merger stages of the late evolution of close binary neutron systems is possible. Determining the properties of the black-hole-torus system produced in such an event is a key aspect to understand the central engine of short-hard gamma-ray bursts (sGRBs). Of the many properties characterizing the torus, the total rest-mass is the most important one, since it is the torus' binding energy which can be tapped to extract the large amount of energy necessary to power the sGRB emission. In addition, the rest-mass density and angular momentum distribution in t…

PhysicsHistoryAngular momentumAstrophysics::High Energy Astrophysical PhenomenaX-ray binaryAstronomyTorusAstrophysicsComputer Science ApplicationsEducationBlack holeStarsNeutron starNumerical relativityTheory of relativitymagnetohydrodynamics binary neutron stars gravitational waves
researchProduct

On the maximum efficiency of the propeller mass-ejection mechanism

2007

Aims. We derive simple estimates of the maximum efficiency with which matter can be ejected by the propeller mechanism in disk-fed, rotating magnetic neutron stars. Some binary evolution scenarios envisage that this mechanism is responsible for expelling to infinity the mass inflowing at a low rate from the companion star, therefore limiting the total amount of mass that can be accreted by the neutron star. Methods. We demonstrate that, for typical neutron star parameters, a maximum of ��_{pro} < 5.7 (P_{-3})^{1/3} times more matter than accreted can be expelled through the propeller mechanism at the expenses of the neutron star rotational energy (P_{-3} is the NS spin period in unit of …

PhysicsAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)PropellerFOS: Physical sciencesOrder (ring theory)Astronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsStar (graph theory)AstrophysicsMagnetic fieldRotational energyNeutron starSpace and Planetary ScienceAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsLow MassAstrophysics::Galaxy AstrophysicsSpin-½
researchProduct

Superfluid properties of the inner crust of neutron stars

2011

We investigated the superfluid properties of the inner crust of neutron stars, solving the Hartree-Fock-Bogoliubov equations in spherical Wigner-Seitz cells. Using realistic two-body interactions in the pairing channel, we studied in detail the Cooper-pair and the pairing-field spatial properties, together with the effect of the proton clusters on the neutron pairing gap. Calculations with effective pairing interactions are also presented, showing significant discrepancies with the results obtained with realistic pairing forces. At variance with recent studies on finite nuclei, the neutron coherence length is found to depend on the strength of the pairing interaction, even inside the nucleu…

PhysicsNuclear and High Energy PhysicsProton010308 nuclear & particles physicsNuclear Theory01 natural sciencesCoherence lengthBaryonSuperfluidityNeutron starPairing0103 physical sciencesNuclear forceNeutronAtomic physics010306 general physicsPhysical Review C
researchProduct